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Blue, green, and red light emitting conjugated copolymers
based on the 1,8-linked carbazole unit were synthesized by the
Sonogashira polycondensation between the 1,8-diethynylcarba-
zole derivative and arylene dibromide comonomers. The mixture
of three polycarbazoles at a suitable molar ratio provided the
white light emission in solutions.

Conjugated carbazole polymers are promising candidates for
applications in organic electronic devices.1 It was recently found
that a different connectivity of the carbazole unit leads to
different polymer properties.2 For example, the poly(3,6-carba-
zole) derivatives, in which the highest electron density positions
of the carbazole are linked either directly or via ³-spacers, are
suitable for electrochemical and phosphorescent applications.3

On the other hand, poly(2,7-carbazole) derivatives usually
possess smaller band gaps and accordingly show excellent
properties for use in thin film transistors and bulk heterojunction
solar cells.4 We very recently reported successful synthesis and
the fundamental properties of the alkyne-linked poly(1,8-carba-
zole)s.5 Based on the electron density distribution of the car-
bazole, the poly(1,8-carbazole) derivatives can be categorized as
in the same class of poly(3,6-carbazole)s, but their effective
conjugation lengths were found to be comparable to those of the
poly(2,7-carbazole) derivatives. This result suggests the high
potential of the poly(1,8-carbazole)s for applications in organic
electronic devices and therefore we became interested in diver-
sifying the library of this novel class of carbazole polymers. We
now report for the first time the synthesis and tunable emission
colors of the 1,8-carbazole-based conjugated copolymers.

The conjugated copolymers 3a3d were synthesized by
the Sonogashira polycondensation between the 1,8-diethynyl-
carbazole derivative and various arylene dibromides 2a2d
(Scheme 1). Taking into account a previous report,5 the mo-
lecular weights and polydispersities are reasonable (Table 1).
The difference in the molecular weight might reflect the
electronic effects of the dibromide comonomers on the catalytic
cycle. Thus, the polymerization with the electron-deficient 2c
provided the highest molecular weight polymer 3c. The obtained
polymers were characterized by 1HNMR and IR spectroscopy
(see Supporting Information10). In the IR spectra, all polymers
show a peak characteristic of the alkyne vibration at 2189
2196 cm¹1. Differential scanning calorimetry (DSC) revealed
their glass transition temperatures (Tgs), ranging from 50 to
106 °C, depending on the comonomer structure (Table 1).
Thermogravimetric analysis (TGA) revealed a sufficiently high
thermal stability with the 5% decomposition temperature of
>358 °C (Table 1).

The optical properties of the polymers were investigated in
CH2Cl2. The fluorene and bithiophene copolymers, 3a and 3b,

showed the longest absorption maximum (max) at 404 and
416 nm, respectively, whereas the benzothiadiazole-containing
copolymers, 3c and 3d, displayed the bathochromically shifted
max ascribed to the intramolecular charge-transfer (CT) bands at
481 and 494 nm, respectively (Table 2 and Figure 1a). The order
of the emission peak positions (em) of 3a3d was consistent
with the order of the max values (Table 2). Thus, the em of 3a,
3b, 3c, and 3d appeared at 433 (blue), 517 (green), 611 (red),
and 683 (red) nm, respectively, covering the entire visible region
(Figure 1b). The Stokes shifts also increased in this order,
whereas the quantum yields tended to decrease.6 This significant
change in the optical properties from 3a to 3d is supposed to
reflect the characteristics of the 1,8-carbazole unit. For example,
the ethynylene-linked donoracceptor type polymer 4, composed
of the 3,6-carbazole unit and benzothiadiazole, has previously
been reported, and its max and em values in CH2Cl2 were 440
and 566 nm, respectively (Figure 1S).7 It is generally known that
weaker donoracceptor interactions elevate the HOMO level of
the donor moieties and at the same time lower the LUMO level
of the acceptor moieties, leading to a smaller band gap of the
donoracceptor type ³-conjugated systems.8 Since both max

and em of 3c were lower in energy than 4, the 1,8-carbazole unit
is a weaker donor than the 3,6-carbazole unit. To reveal the
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Scheme 1. Sonogashira polycondensation of 1,8-diethynylcar-
bazole derivative 1 and arylene dibromide 2a2d. (a) PdCl2-
(PPh3)2, CuI, i-Pr2NH, toluene, 80 °C.

Table 1. Summary of the molecular weight and thermal
properties of poly(1,8-carbazole)s 3a3d

Mw/10¹3 a Mn/10¹3 a Mw/Mn
a Tg/°Cb Td5%/°Cc

3a 3.9 3.0 1.3 50 375
3b 4.6 3.5 1.3 70 363
3c 8.6 5.4 1.6 106 370
3d 3.1 2.8 1.1 96 358
aDetermined by GPC (THF eluent, calibrated by polystyrene
standards). bGlass transition temperatures determined by DSC.
cTemperature at which 5% weight loss occurred upon heating.
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donor strengths, the cyclic voltammograms (CVs) of 3a3d were
measured in CH2Cl2 (+0.1M n-Bu4NClO4) at 20 °C (Figure 2S
and Table 1S). All polymers showed the reversible carbazole-
centered oxidation at ca. 0.800.90V, but the potentials were
apparently higher than the homopolymer,5 suggesting a weaker
donor ability. The energy levels of 3a3d were calculated and
summarized (Table 2S). It was revealed that both the HOMO
and LUMO levels decreased by copolymerization with the less
electron-donating comonomer moieties.

Since we could obtain blue, green, and red color emitting
polymers, white light emission was then studied. With the
quantum yields in mind, the CH2Cl2 solution of 3a (blue), 3b
(green), and 3d (red) at the molar ratio of 1:2:2 and 10¹6M/
repeat unit were prepared. Excitation at 255 nm afforded an
efficient emission from the three components and the observed
emission color was definitely white (Figure 2).

In conclusion, the 1,8-carbazole unit was found to be a
useful donor component for the synthesis of narrow band gap
polymers and multicolor emitting polymers. Since the copoly-
merization can control the component ratio and the energy level
of the resulting polymers,9 single polymer-based white emitting
materials are expected. Further studies on organic electronic
applications are currently underway.
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Table 2. Summary of the optical properties of 3a3da

max/nm em/nm [ex/nm] Stokes shift/cm¹1 ¯f,sol

3a 404 433 [326] 1658 0.60b

3b 416 484, 517 [416] 3377 0.31b

3c 481 611 [418] 4423 0.16c

3d 494 683 [494] 5602 0.36c

aMeasured in CH2Cl2. bDetermined against quinine sulfate in
0.05M aq. H2SO4. cDetermined against rhodamine 6G in
ethanol.
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Figure 1. (a) UVvis and (b) fluorescence spectra of 3a3d in
CH2Cl2 at 20 °C.
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Figure 2. (a) UVvis and fluorescence spectra of the mixture
of 3a, 3b, and 3d (1:2:2) in CH2Cl2 at 20 °C and (b) the image of
the white light emission.
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